REALISTIC SYNTHETIC DATA FOR RULE MINING

ABSTRACT

We investigate the statistical properties of the databases generated by the IBM QUEST program. Motivated by the claim (also supported by empirical evidence) that item occurrences in real life market basket databases follow a rather different pattern, we propose an alternative model for generating artificial data. We claim that such a model is simpler than QUEST and generates structures that are closer to real-life market basket data.
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1. introduction

The association rule mining (ARM) problem is a well-established topic in KDD. Agrawal and Srikant (1994), Bayardo (1998), Han et al. (2000) and many other authors devised increasingly elaborate solutions for this problem. However several issues are still unsolved. In particular the evaluation of ARM algorithms is often tackled empirically using data generated by the QUEST program from the IBM Quest Research Group. This approach has several limitations. First, the intricacy of QUEST makes it difficult to draw theoretical predictions on the behaviour of the various algorithms on such databases. Also, empirical comparisons made in this way are difficult to generalise due to the wide range of possible variations, both in the characteristics of the data (QUEST output is governed by a several interacting parameters), and in the environment in which the algorithms are being applied. Finally Brin et al. (1997) hinted that the datasets produced by QUEST might not be the hardest to deal with (a claim supported by the more recent results of Zheng et al. (2001)). 

In this paper we first claim that heavy tail statistical distributions (see Watts (2004) for a survey on the topic) arise naturally in characterizing the item occurrence distribution in market basket databases but are not clearly evident in data generated by QUEST. Motivated by the outcomes of a preliminary empirical analysis we look at the distribution of item occurrence in a typical large QUEST database. Our mathematical analysis, in a simplified setting, confirms our empirical findings (in the past authors like Zaki and Ogihara (1998) or Purdom et al. (2004) have studied the theoretical performances of some ARM algorithms, however, a study of the structural properties of the databases generated by QUEST has never been attempted before). The final contribution of this paper is a proposal for an alternative synthetic data generator and a complete mathematical analysis of the item occurrence distribution in the resulting databases. We claim that scale-free models like ours are simple to implement and provide more realistic synthetic data for testing ARM algorithms.
2. ANALYSIS OF REAL DATA

From now on a database D is a collection of 
[image: image1.wmf] transactions, each being a subset of a set I of 
[image: image2.wmf] items. For 
[image: image3.wmf] let 
[image: image4.wmf] be the number of items that occur in 
[image: image5.wmf] transactions. In this section we substantiate the claim that, at least for market basket  data, the sequence [image: image6.wmf] follows a distribution that has a ``fat'' tail whereas the typical QUEST data shows rather different patterns. To this end we use the retail data sets BMS-POS, BMS-WebView-1, BMS-WebView-2, and retail.dat, and QUEST sets T10I4D100K.dat and T40I10D100K.dat easily available from http://fimi.cs.helsinki.fi/data/. 
Figure 1.  Log-log plots of the real-life data sets along with the best fitting lines
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 The plots in Figure 1 show the sequence [image: image8.wmf] on a log-log scale along with the best fitting least square lines (computed using the fit command of gnuplot). Figure 2 shows the same statistics for the two synthetic databases. Since the tested datasets have homogeneous features, the differences  between  the  plots in the two  figures are striking and may be used to argue that the  sequences  obtained from  real-life  databases fit  a  straight
Figure 2. Log-log plots of the QUEST data sets along with the best fitting  line
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 line much better than those obtained from the QUEST databases. This leads to conjecture that the two types of databases have in fact rather different properties. Furthermore the good line fitting of the real database sequences (especially in the tail of the sequences) leads to the additional conjecture that the studied distributions may be heavy tailed (i.e. decay like 
[image: image10.wmf] for some fixed 
[image: image11.wmf]). 

3. A CLOSER LOOK AT QUEST

The QUEST program returns two related structures: the actual database D and an auxiliary collection T of so-called (maximal) potentially large itemsets or patterns, whose elements are used to populate D. There are 
[image: image12.wmf] different items in I, and 
[image: image13.wmf] transactions in the database, of average size 
[image: image14.wmf]. The set T contains 
[image: image15.wmf] elements and their average size is 
[image: image16.wmf]. Furthermore a number of other numerical values need to be set to specify completely the programs behaviour. To avoid cluttering the presentation, rather than working on Agrawal an Srikant original model, we assume that D and T be populated by the following (simplified bu equivalent) process:

1. Generate T by selecting the first pattern as a random 
[image: image17.wmf]-tuple over I, and any subsequent pattern by choosing 
[image: image18.wmf] random elements from the last generated pattern and 
[image: image19.wmf] elements at random in I.

2. Generate D by filling each transaction independently with the elements of 
[image: image20.wmf] random patterns in T.

Let 
[image: image21.wmf] (resp. 
[image: image22.wmf]) denote the number of transactions in D (resp. patterns in T) containing item 
[image: image23.wmf]. Assume that 
[image: image24.wmf] is polynomial in 
[image: image25.wmf] and 
[image: image26.wmf]. It follows directly from our definition of the generation process that, for each item 
[image: image27.wmf], 
[image: image28.wmf] has binomial distribution with parameters 
[image: image29.wmf] and 
[image: image30.wmf], and the expected value of 
[image: image31.wmf] is 
[image: image32.wmf]. Moreover, at least in the restricted case when 
[image: image33.wmf], by studying the asymptotic distribution of 
[image: image34.wmf], it is possible to prove that, for constant values of 
[image: image35.wmf] and large values of 
[image: image36.wmf], 
[image: image37.wmf] is approximately 
[image: image38.wmf] and 
[image: image39.wmf] is very close to its expected value. Hence for  large
[image: image40.wmf], the proportion of items occurring in 
[image: image41.wmf] transaction decays much faster than 
[image: image42.wmf] for any fixed 
[image: image43.wmf]. For instance, if 
[image: image44.wmf], 
[image: image45.wmf]. Detailed arguments are left to the full-version of this paper.

4. AN ALTERNATIVE MODEL

In this section we put forward an alternative model for generating synthetic databases. Our model is in line with the proposal of  Barabasi and Albert (1999) originally introduced to model structures like the scientific author citation network or the world-wide web. The model contains a mechanism called preferential attachment that allows the process that generates the transactions in the database one after the other to choose their components based on the frequency distribution of such items in previously generated transactions. Such mechanism seems to be necessary to generate datasets that are closer to the real ones analysed in Section 2. Instead of assuming an underlying set of patterns T from which the transactions D are built up, the elements of D are generated sequentially. At the start there is an initial set of 
[image: image46.wmf] transactions on 
[image: image47.wmf] existing items. The model can generate transactions based entirely on the 
[image: image48.wmf] old items, but in general we assume that new items can also be added during transactions, so that at the end of the simulation the total number of items is 
[image: image49.wmf]. The simulation proceeds for 
[image: image50.wmf] steps generating groups of transactions at each step. For each group in the sequence there are four choices made by the simulation:

1. The type of transaction, OLD or NEW. An OLD transaction (chosen with probability 
[image: image51.wmf]) consists of items occurring in previous transactions. A NEW transaction (chosen with probability 
[image: image52.wmf]) consists of a mix of new items and items occurring in previous transactions. 

2. The number of transactions in the group, 
[image: image53.wmf] (resp. 
[image: image54.wmf]) if  OLD (resp. NEW) transactions are to be generated. This can be a fixed value, or given any discrete distribution with mean 
[image: image55.wmf] (resp. 
[image: image56.wmf]). Grouping corresponds to e.g. the persistence of a particular item in a group of transactions in the QUEST model.

3. The transaction size. This can again be a constant, or given by a probability distribution with mean 
[image: image57.wmf].

4. The method of choosing the items in the transaction. If transactions of type OLD  (resp. NEW) are chosen in a step we assume that each of them is selected using preferential attachment with probability 
[image: image58.wmf] (resp. 
[image: image59.wmf]) and randomly otherwise.

Our main result (its proof, along the lines of similar results presented by Cooper (2006), is skipped due to space limitation) is that, provided that the number of transactions is large, with probability approaching one, the distribution of item occurrences in D follows a power law with parameter 
[image: image60.wmf], where 
[image: image61.wmf] is


[image: image62.wmf].
In other words, the number of items occurring 
[image: image63.wmf] times in 
[image: image64.wmf] transactions is approximately 
[image: image65.wmf] for large 
[image: image66.wmf] and some constant 
[image: image67.wmf]. Furthermore, for fixed values of 
[image: image68.wmf], the expected number of items and transactions are, respectively


[image: image69.wmf]      and      
[image: image70.wmf].

To complete our presentation it is worth pointing out that coding our generator in C or Java, assuming, say, that all transactions are of type OLD, 
[image: image71.wmf] always, and the transaction sizes are chosen from some well-known distribution, is a straightforward programming task.  Hence the proposed approach is simple and yet leads to realistic synthetic data.
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